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Abstract

Kurganov and Tadmor have developed a numerical scheme for solving the initial value problem for hyperbolic
systems of conservation laws. They showed that in the scalar case their scheme satisfies a local maximum-minimum
principle i.e., the solution at future is bounded above and below by the solution at current locally. In this paper we show
that this scheme is positive in the sense of Friedrichs for systems as well. We present the scheme of Kurganov and
Tadmor as a convex combination of composites of positive schemes. Since each component of a composite scheme is
bounded in the /?> norm, so is the convex combination of the composites. To achieve second order accuracy in time, we
use a Runge-Kutta type scheme due to Shu and Osher. We present two numerical experiments to add to the ones
carried out by Kurganov and Tadmor.
© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The total variation of a solution of a single conservation law in one space variable is a diminishing
function of time. For hyperbolic systems of conservation laws this is no longer strictly true, although the
related Glimm functional is decreasing. Harten, in [3], and many after him, have derived total variation
diminishing (TVD) schemes that worked splendidly for approximating solutions of systems of conservation
laws, principally the Euler equations of compressible flow in one space variable.

The total variation of solutions of hyperbolic systems of conservation laws in more than one space
variable is not a diminishing function of times; in fact it can become unbounded because of the possibility
of focusing. Therefore, there can be no TVD schemes for such problems. The only functional known to be
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bounded for linear systems of equations that are symmetric hyperbolic is energy, represented by the L?
norm of the solutions. Friedrichs has shown that difference approximations to solutions of such systems
which employ coefficient matrices that are symmetric, positive definite, and depend Lipschitz continuously
on the space variables, are bounded under the discrete /> norm of the numerical solutions. This suggests
positivity as a design principle for solving systems of conservation laws in more than one space variable.
The organization of this paper is as follows. In the beginning of Section 2, we review the positivity
principle for linear systems. In Section 2.1 we describe the notion of a positive scheme for solving symmetric
nonlinear systems. In Section 2.2 we describe the scheme of Kurganov and Tadmor for one space di-
mension and prove that the scheme is a convex combination of composites of positive schemes. The Runge—
Kutta method to achieve second order accuracy in time is described in Section 2.3. In Section 2.4 we explain
how to combine the fluxes in all space direction. The numerical experiments are described in Section 3.

2. Positive scheme

We consider multi-dimensional hyperbolic systems of conservation laws
d
Ui+ Y F(U), =0, (1)
s=1

where U = (uy,... 7un)T €R" and x = (x1,Xs,...,%;) € RY. We assume that all Jacobian matrices
A, = 0F,(U)/0U are symmetric or simultaneously symmetrizable with the same similarity transformation
for the proof of positivity [11]. The actual scheme does not required that [9].

A linear symmetric hyperbolic systems is of the form

d
U+ AU, =0, (2)

s=1

A, real symmetric matrices, which is independent from U and its dependence on x is Lipschitz continuous. It
is easy to show in this case that the L? norm of a solution is of bounded growth

U@ <e U0, 3)

where ||V (¢)|* = J(V(x,t),V(x,t))dx and c is related to the Lipschitz constant.

Set a uniform Cartesian grid {Q,} in R%, where J = (ji, j»,...,/q) is a lattice point in which all j, are
integers. The grid points are x; = (j;Axy, ..., jsAx;). Let U; be an approximation to the value of the so-
lution U(x,,¢) at current time ¢, and U} an approximation to the value of the future solution U(x,, f + At).

Friedrichs [2] has shown that solutions of such Eq. (2) can be approximated by solutions of difference
equations of form

U; = Z CrxUjik, (4)
I3

and with the coefficient matrices C, x satisfying the following properties:

(1) Cyk is symmetric and semi-positive definite,

(ii) Z C;x =1, where I is the identity matrix,
K

(iii) C;x = 0 except for a finite set of K,
(iv) C;x depends Lipschitz continuously on x.
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The first two properties, in scalar cases, imply that the solution at future U* is a convex combination of the
solution at current U, which leads to a local maximum-minimum principle. The third property echos the
fact that the propagation speed of waves is finite for hyperbolic systems.

He has shown in [2] that the /?> norm of solutions of difference schemes satisfying these properties has
bounded growth:

U] < (1 + constA)[|U], (6)

where the discrete /* norm is defined as

Iu|* = Z(UJ, Uy).

J

The value of the constant in (6) depends on the Lipschitz constant.
Proof of (6): Take the scalar product of (4) with U;

(U;,U;) = (U5, CrxUg)- (7)

K

Since C, x is symmetric and semi-positive definite, (U, C; ') can be regarded as an inner product, to which
the Schwartz inequality applies; combined with the inequality between arithmetic and geometric mean we
get

1 1
(U,CrxV) < \/(U7 CJ,KU)\/(Va CixV) < §(U> C,xU) +§(V7 CikV). (8)
Using this on the right side of (7) gives
1
(U5, U)) < 5 Z Uj» CowU3) 45 2_(Uris, Colsie): )

Carrying out the summation with respect to K, using condition (ii) of (5) and multiplying by 2 gives

(U;,U;) < Z(UJ+Ka CrxUjk). (10)

K

Now sum with respect to J, and introduce K +J = N as new index of summation:

Z(U}Uj)g Z(UNaCN—K,KUN)~ (11)

J N.K
Because Lipschitz continuity of the coefficient matrices and the fact that K ranges over a finite stencil,
Cy-xx = Cyx +Dyg,
and
p(Dy k) = 0O(4),
where p(D) is the spectral radius of D and A = min(A¢, Axy, . .., Ax,). Therefore, we get that the right side of
(11) is

Z Uy, CyxUy) +0(4 )Z(UN;UN)7
NK

N
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which, using (ii) of (5), is equal to

> (Uy, Uy)(1+0(4)).

N
Setting this into (11) gives (6)
[|U*]| < (1 4 constd)||U]|.
Q.e.d.

In the usual variables the Euler equations are not symmetric but symmetrizable [5] and [20]. It is worth
remarking that if a system of conservation laws has a convex entropy, then the linearized system is sym-
metrizable. We have indicated in [11] how to extend the notion of positive schemes to symmetrizable
systems, and show their /> boundedness.

The difference schemes studied in this paper are nonlinear; when we write them in the form (4), the
coefficient matrices C, x depend on the solution being computed. In the applications of interest these so-
lutions contain shocks and contact discontinuities; therefore, the coefficient matrices C; x not only fail to be
Lipschitz continuous, they are not even continuous. So the analysis of the boundedness of the /> norm of
the solution is not applicable. A possible way of salvaging our argument is to note that in inequality (8) the
left side is substantially smaller than the right side, unless the vector U and V are nearly equal. For unless
the vectors U and V are nearly proportional, the Schwartz inequality is a strict inequality. Similarly, unless
(U,CU) and (V, CV) are nearly equal, their geometric mean is substantially less than their arithmetic mean.
This shows that at a discontinuity the left side of (10) is substantially less than the right side. We do not at
this moment see how to show that this gain is enough to counterbalance what we may lose when we replace
on the right in inequality (11) the matrix Cy_g ¢ by Cyx, but at least we have found a plausible reason why
our scheme is as stable as it appears to be in numerical experiments.

2.1. Positivity principle

Conservative schemes are of the form

d
UJ* =U, - Z g {FJ%&Y - FJ—%eS} (12)

s=1 S

where At is the time step, Ax, is the spatial step in the x, dimension and e, is the unit vector in the x, di-
rection. A conservative scheme (12) is called positive if it could be rewritten in form of (4) and its coefficient
matrices satisfy the first three conditions of (5), see [11]. The positivity principle presented above is for the
stability of numerical solutions of general multi-dimensional hyperbolic systems. It does not guarantee the
positivity of pressure and density for the Euler equation or MHD.

2.2. Positive scheme in one-dimension

Consider one-dimensional hyperbolic systems of conservation laws
U +FU), =0. (13)

We interpret the scheme of Kurganov and Tadmor as flux splittings, see [16] by Shu and Osher, and Convex
ENO scheme [12] by Liu and Osher, and rewrite the Eq. (13) as

U+F'U), +F (U), =0. (14)
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Here
F(U)=F"(U)+F (U), (15)
and
i _
A _oF ) >0 and 4 = oF(U) <0, (16)
ouU oU

where AT = (0F*(U)/0U) > 0 means symmetric semi-positive definite and A~ = (0F (U)/0U < 0) means
symmetric semi-negative definite. A simple example is

Fr) =" g ) =T (17)
where o is a function of x and ¢ (but not U) and « > p(0F /OU), where p(9F /0U) is the spectral radius of the
local Jacobian matrix of F(U). This is called local flux splitting. If « is taken to be constant over the whole
domain in x, the splitting is called global flux splitting. The local one produces less numerical viscosity than
the global one. The importance and potential of flux splitting started to be realized and established in the
early through mid eighties, [1,4,16,18,21,22], etc. and an early work can be traced back to Steger in late
seventies [17].

We consider schemes in conservation form, i.e.,

" _ _ . At
U; :Ui—)t[Fji%—ij%—i—FH%—Fj 1| where L= (18)

2

Choice of F +| is a variant of the ones used by Liu and Lax in [11], and Liu and Osher in [12]. It makes use of
two hmltmg matr1ces <I>+ ) and '{’+ defined as follows:

6 (0;) $(0y)/0;
45;;; = and ‘Pjtr% = ; (19)
0(0,) ¢(0,)/0,
where the limiter function ¢, see [19], satisfies
0<o<2 0< W ana py=1. (20)
and its arguments are
+ (UHI — U/)z :
= __Jd I<i<n. 21
"G, 2y
Here (), means the ith component of vector V. It follows from (20) that:
0< q')ﬁ% <2 and 0< q/_;% <2/ (22)

and

@7\ (U) ~ Up1) = ¥y (Upa — ). (23)
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Define
+ 1.

Uiy = U+ 524U = Upi) (24)

FL=F (UL, (25)
Because of the relation (23) of <13;.r+l and ‘P;.:rl, Eq. (24) can be rewritten as

2 2
1
Uy = Uy 5 (Ui = U)). (26)

In smooth regions except at extrema of solutions, all 0 = 1 + O(4x), hence 'P/:l = I + O(4x). Therefore, it
follows from (24) that: ’

— U+ LY A o4) = U4 Ul ) 2 4 O(40),

"
Y Ax 2 2

j+h

which is a second order accurate approximation of U(x; + 4, 1), and hence FIL is a second order accurate
approximation of F*(U(x; + 5, 1)). o

Similarly define the limiting matrices (D;f% and 'I’j__% as follows:
o(07) o(07)/0;
¢, = . and ¥, = - (27)
J=3 . J3 .
»(0,) ¢(0,)/6,
and
0; = (U; = Uj-1),/(Upa = Uy);,  1<i<n. (28)
It follows from (20) that
0<P <2 and 0KV <2 (29)
J=3 )
and
P (Ui = Uj) = ¥4 (U; = Uja). (30)
Define
_ 1
Uy =U=52,Un - U) (31)
Fa=(U7) (2
Because of relation (30), Eq. (31) can be rewritten as
_ L, _
Uy =U =5 ¥ y(U = Up). (33)
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By (26) and (33)

1 1 _ 1 1
U;?—< 231';1>le+§51/;%le+1 and Uj%:<1—§?’ >U+2¥' WU (34)

Assume that the system (13) is symmetric. In the following, we prove that the scheme (18,24,25,31,32) is
positive.
Because of (22) and (29), the above Eq. (34) shows that U™ = {U;l} and U™ = {Uj:l} are positive
2 2

combinations of U = {U;} of form (4) where the conditions (i), (ii), and (iii) of (5) are satisfied. If condition
(iv) were satisfied, we could conclude that

[UFI<(T+O0()[IU] and [[UT[|<(1+O()[U]. (35)
Setting (34) into (18) we get

U; = U= a[F (Ufy) =R (Uf) +F (U) = F ()] (36)
Recall (17) that

+ + +
F*(U* ) B F(Uﬁé) + O€j+%Uj+% F*(U* ) B F(Uj,%) + ocj,%U%
j+% - 2 ) j—% = 5 ,
(U _F(U/}%) %l (U _F(U_;Q Uy
( H%) a 2 ’ ( f*%) - 2 :

Here o should be chosen to be large enough and will be specified below (41). (36) can be rewritten as

F(usy) +ocj+%Uj++%_F(U+ ) 207, +F(Uf )~ U, F(Un) — o, U”

1 —s 1
Ur=U;—J I+ /= i
=T 2 2 2 2
(37)
Let 4; and .«/; be the Roe matrices of F i.e.,
+ + ) — + +
FUn) - F(0n) =Y - Uy
F(U) =P () = (U - Uy).
We then get
U*—1 Uy —2|4,;,(Uf, = UF Ut Ur ! U — Aot \U,, — U
3 =\ T AN T Vi) T ey T AV T Y
~ U+ (38)

Here we have used Roe’s mean value theorem [15] which asserts that for any pair of vectors V' and W,
F(V)—F(W)=AM)(V — W), where A = (0F(U)/0U), and M = M(V,W). We emphasize that we do not
need to calculate the Roe matrix A(M), we only need it for the proof of positivity.



X.-D. Liu, P.D. Lax | Journal of Computational Physics 187 (2003) 428-440 435

Using (24) and (31) we can rewrite (38) as

1 1
[]ﬂL ) j+I§Uj:% —OCJ;%U;:%} +§U 4¢j+1(U U] 1)}

11 _ _ _ 1 |
2 { 2V i[ﬁ’f'(Uzﬁ = Upy) = Ui+ 83U + 50+ 394U - Uf')}
1 ,
:Z{(1—2A(Aj+ocj+%1)) +2/1(A +ocj,LI)U }
1 _ , _
+ {0+ 2t = 0 U + 20— S+ 1)U
1 1.1 1. 1 T R
+§ I_Z(pj+%_1¢]*l U +4¢j+]Ui_l+Z¢jf%Ui+l :ZV/ +ZV/ +§V/ (39)
Here
Vi = (1= 2004+ a4 1) ) Uy + 204y 4 01 UF
Vi = (124t = D)) Uy 22— ot 0] ) U, (40)
| R |- 1
V= qup1¢%>U+4qgml+4] a1
Here we require that
4,4 > max(p(4)). pl(s;1). (41)

The propagation speeds of waves involved in hyperbolic systems are finite i.e., those spectral radius are
finite. Hence such « exists and can be calculated or determined by trial and error in numerical calculations.
We also require the following CFL condition:

},mgxp ( %) < % . (42)

Under (41), (42) V' = {V;"} is a positive combination of U™, V'~ = {V"} is a positive combination of U,
and V = {V}} is a positive combination of U of form (4) where conditions (i), (ii) and (iii) of (5) are satisfied.
If (iv) of (5) were satisfied, we could conclude that

<@+ O0N|ur], IV I<@+0)Iu], [IVI<(1+0)|u]. (43)
By (39),
.1 11
Ui =gV +3V 57
Take the scalar product of it with U;, then use the Schwartz inequality, we get
e o 1 1 1
(U U< 3510 + 307 7) +5 (.1,

Summing over j

* 2
U7 < ||V+|| +7 ||V ¥ +—||V||
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Using (43) we get
%112
071 < (1 + () (101 + 41U 1F + 5107 ).

Combining this with (35) we finally get that

U< (1 + O], (44)
under the conditions of (41), (42) and (iv) of (5).

2.3. Runge—Kutta time discretization

To achieve second order accuracy in time we use the following second order accurate Runge-Kutta
method, due to Shu and Osher [16]:

m At + + -
U = U fA—x[F —Ff+ /+17E/_%},
At * * —
UJ?‘**U*fE[F;I —E{ +F} Fj;%}, (45)
m+1_1 m 1 Kok
U =507 35U

Here F* abbreviates the numerical flux F* evaluated at U* and F~—* abbreviates the numerical flux F~
evaluated at U*.
By the previous analysis,

1T < (L + O)|IU|* < (1+ o)l

SO

1 LT "
[0 < S U7+ 5 107 < 1+ o)) U] 0

2.4. Positive schemes for multi-dimensional systems of conservation laws

For multi-dimensional systems, we use the simple and well-known dimension-by-dimension technique
[16], which blends well with the positive schemes.

Consider multi-dimensional hyperbolic systems of conservation laws (1). Using the dimension-by-di-
mension technique [16], let positive schemes be of conservative form

d
. A -
Uy = Ur =3 o (B~ Flae + e~ Fra) (47)
s=1 S -

A family of positive fluxes is constructed exactly as in one-dimension,

F+ _ F+(U+ )

J+ 55 J+—es
1 1
UL% =U,+ 2¢J+ LW (Ur=Upe) =Us +5 > TH 1o, (Usie, = Uy), 8)
F:/_-%— 5€s = F; (UJ+—E )
_ | L, _
L]J_F_,gA UJ+es - E ¢J+%ES(UJ+ZES - UJ+e;) = lJJ+e,v - 2 'PJ+ Lo (UJJre; - UJ)
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It is worth to note that the family of schemes (47), (48) uses component-wise limiting instead of field-
by-filed limiting.
The family of schemes (47), (48) are positive under the following CFL condition:

4 At OF,(U) 1
A S
; Ar. mgxp( U )\ 1 (49)

We use the same second order accurate energy preserving Runge-Kutta of Shu and Osher [16] to achieve
second order accuracy in time: for m =0,1,...,

d
—Up - B E b F
J+2e$ J—% J+es J—des |

s=1

d
Kok + % + % — — % 50
U/ Zles |:E]+c _F % +F‘J+e _Elfées:|’ ( )
1 1
Uyt = SUr 305"

It is straight forward to extend our analysis (46) of /> boundedness to multi-dimensional hyperbolic sys-
tems:

1 |- m

3. Numerical experiments

In all examples in the section, we use local flux splitting, see (17), with

sy = wmax (o T ) o () ). (s1)

Here u is called the amplifier and u = 1 in example 1 and x4 = 1.3 in example 2. p(4) denotes the spectral
radius of the Jacobian matrix 4 = (0F(U)/0U). Van Leer’s limiter function is used.
We approximate solutions of the two-dimensional Euler equations of Gas Dynamics,

U+ FR(U),+ k), =0,

U= (p,mnE),

R(U) = (m, pu* + P, puv,u(E + P))",
B(U) = (n, puv, pv* + P,v(E + P))",

P=(y- 1)<E;p(uz+vz)>v

m=pu, n= po.
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Example I: Double Mach reflection. A planar shock is incident on an oblique wedge at a 60° angle. The
test problem involves a Mach 10 shock in air, y = 1.4. The undisturbed air ahead of the shock has density
1.4 and pressure 1. We use the boundary conditions described in [23]. The flow at time z = 0.2, computed by
the positive scheme of Kurganov and Tadmor, is plotted in Fig. 1 with Ax = Ay = % ﬁ—)’( =0.02. In each
plot 30 equally spaced contours are shown.

There are three difficulties in computing this flow mentioned in [23]. The first difficulty is the rather weak
second Mach shock; dies out entirely by the time it reaches the contact discontinuity from the first Mach
reflection. Fig. 1 shows that the second Mach shock is perfectly captured. The second difficulty is the jet
formed when the flow of the denser fluid is deflected by a pressure gradient built up in the region where the
first contact discontinuity approaches the reflecting wall. Fig. 1 shows that the jet is extremely well cap-
tured. The third difficulty is caused by the region bounded by the second Mach shock, the curved reflected
shock, and the reflecting wall. The double Mach reflection contains both steady and unsteady structures.
The curved reflected shock is moving rapidly at its right end and is not moving at all at its left end; this
causes oscillations for many difference schemes. Just as the original positive schemes, the positive scheme of
Kurganov and Tadmor generates no oscillation at all; thus the positive scheme overcomes extremely well all
three numerical difficulties.

Example 2: A Mach 3 wind tunnel with a step. This problem has been a useful test for schemes for many
years. The tunnel is 3 length units long and 1 length unit wide, with a step which is 0.2 length units high and
0.6 length units away from the left end of the tunnel (see Fig. 2). The state behind the incoming shock has
density 1.4, pressure 1.0, and velocity 3 from left to right. These are used as boundary condition at the left;
at the right all horizontal gradients are assumed to vanish. Along the walls of the tunnel and the obstacle
reflecting conditions are applied in the perpendicular direction. The corner of the step is the center of a
rarefaction fan and hence is a singular point of the flow. At the corner we use the boundary condition used
by Woodward and Colella in [23]. The amplifier u = 1.3 is used, see Eq. (51). This value determined by trial
and errors. The density and pressure contours in the tunnel at time 4 are displayed in Fig. 2 with

Ax = Ay = &, £ =0.15. The flow at time 4 is still unsteady.

Density, T = 0.2

0.5 1 1.5 2 25 3
Stepsize dx=4/480, dy=1/120, dt/dx=0.02
3 Pressure, T=0.2
o 1 T T
o
~
(=3
< 0.8 R
(=]
1
S
Ro6f g
=3
@ T
:‘IS == =5 -
F—3
o
E \
s T T ‘K 3
1
= 0.5 1 1.5 2 25 3

Stepsize dx=4/480, dy=1/120, dt/dx=0.02

Fig. 1. Double Mach reflection.
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Density, T=4

1.5 2 2.5 3
Stepsize dx=dy=1/80, dt/dx=0.15

Pressure, T =4

1.5 2
Stepsize dx=dy=1/80, dt/dx=0.15

Fig. 2. Wind tunnel.

The general position and shape of the shocks are accurate. The shocks are well captured. There is no
numerical noise, the contact discontinuities and the weak oblique shock are resolved. The resolution is as
high as that of our original positive schemes [11].

4. Discussion

TVD (Total-Variation-Diminishing) is a proper principle for designing numerical schemes to solve
hyperbolic equations (or linear hyperbolic systems) in one space dimension. For multi-dimensional hy-
perbolic systems, due to the possibility of focusing, TV norm is not bounded and hence no longer proper for
such systems. The only functional known to be bounded for solutions of linear hyperbolic systems is L?
norm [2]. Extending this result, [11], the positivity principle was introduced for multi-dimensional hyper-
bolic systems. The rationale of positivity principle is /? stability. Positivity principle is a proper designing
principle for solving multi-dimensional hyperbolic systems.

Central schemes [6,7,9,10,13,14] are field-by-field limiting free. Other field-by-field limiting free schemes
are [8] and [12]. Hence with helps of these schemes hyperbolic systems with complex eigensystems or weak
hyperbolic systems can be solved easily and efficiently.

In this paper we show that Kurganov and Tadmor scheme, a field-by-field limiting free scheme, is po-
sitive for symmetric or symmetrizable multi-dimensional hyperbolic systems.

We present two numerical experiments to add to the ones carried by Kurganov and Tadmor [9]. The
numerical resolutions we obtained are as high as the ones we got from our original positive schemes [11],
which use field-by-field limiting.
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